
MultEcore: Combining The Best of Fixed-Level and
Multilevel Metamodelling

Fernando Macias1,2, Adrian Rutle1, and Volker Stolz1,2

1 Bergen University College
first.last@hib.no

2 University of Oslo

Abstract Mainstream metamodelling approaches based on the OMG standards,
such as EMF, have a fixed number of modelling levels. Despite their partial
acceptance in industry, limitations on the number of levels has led to problems
such as lack of flexibility and mixed levels of abstraction. Existing multilevel
modelling approaches have already tackled these problems by providing features
like deep modelling and linguistic extension. However, these approaches have
face challenges like hesitation of adoption by industry due to the lack of an
ecosystem which frameworks like EMF already have. In this paper, we (1) propose
a conceptual framework for multilevel modelling that tackles such challenges, (2)
illustrate the approach with two examples, and (3) present the tool MultEcore,
which makes the proposed framework directly compatible with EMF, combining
the best of the two worlds of fixed- and multilevel metamodelling approaches.

1 Introduction

Model-Driven Software Engineering (MDSE) is a means for tackling the increasing com-
plexity of software development processes through abstractions [7]. In MDSE, the main
aspects of software are usually modelled using mainstream modelling approaches which
conform to the OMG standards, such as Eclipse Modelling Framework (EMF) [22].
These approaches provide high reliability, a modelling ecosystem and good tool coverage.
However, they are usually restricted to a fixed number of modelling levels, consequently
suffering from mixed levels of abstraction, the need to encode a synthetic typing rela-
tion among model elements in the same level [14], and the difficulty to maintain and
understand such models due to convolution.

Multilevel modelling addresses the issues of fixed-level metamodelling approaches
by enabling an unlimited number of levels, deep hierarchies, potencies and linguistic
extensions [4,9,19]. Employing a multilevel modelling stack has proven to be the best
approach in many application scenarios [11]. Nevertheless, multilevel modelling also has
several challenges hampering its wide-range adoption, such as lack of a clear consensus
on fundamental concepts of the paradigm, which has in turn led to lack of common
focus in current multilevel tools. Moreover, using multilevel approaches forces the use of
specialised tools and technologies, causing technology lock-in. This restriction becomes
an important disadvantage for integration and interoperability among existing modelling
ecosystems.



In this paper, we introduce an approach which combines the best from the two worlds:
fixed-level metamodelling with its mature tool ecosystem, and multilevel modelling with
unlimited number of abstraction levels, potencies and linguistic extensions. Using our
approach, model designers can seamlessly create a multilevel version of their hierarchies
while still keeping all the advantages they get from fixed-level ones. In addition, we
provide the following two new features for our multilevel approach, which we identi-
fied as important in modelling behaviour: (i) an ontological stack independent of any
linguistic metamodel, and (ii) the idea of (un)pluggable linguistic metamodels onto the
ontological modelling stack. We also present MultEcore, a tool for multilevel modelling
without leaving the EMF world, and hence allowing reuse of existing EMF tools and
plugins. As a proof of concept, we outline an application scenario in which we use
MultEcore for runtime verification of behavioural models [16,17].

The outline of this paper is as follows: Section 2 examines existing multilevel
modelling approaches and compares them to ours; Section 3 presents our conceptual
framework, the tool MultEcore and two examples of its application; and Section 4
concludes the paper and outlines future lines of work.

2 Related Work

In this section we present some existing approaches that have tackled multilevel model-
ling by creating conceptual frameworks and tools. Generally, they focus on the definition
of Domain Specific Modelling Languages (DSMLs), where the need for flexibility for
both the typing relations and the numbers of levels is paramount. These approaches
are based on the concept of clabject [1], which provides two facets for every model-
ling element, so that they can be seen as classes or as objects. Clabjects stem from
the traditional object-oriented programming, so their realization into a metamodelling
framework requires a linguistic metamodel that all the levels must share. That is, the
clabject element is contained in a linguistic metamodel, together with other elements
such as field and constraint.

MetaDepth [9] is a tool that allows to create deep metamodelling hierarchies. It
serves as a proof of concept for a multilevel modelling framework that requires the
aforementioned linguistic extension. MetaDepth supports several interesting features
such as model transformation reuse [13] and generic metamodelling [10]. Melanee,
which resembles MetaDepth, has been developed with a stronger focus on editing cap-
abilities [2], as well as possible applications into the domains of executable models [3].
AtomPM [23] is a modelling framework highly focused on offering cloud and web tools.
Modelverse [24], which is based on AtomPM, offers multilevel metamodelling function-
alities by implementing the concept of clabject and building a linguistic metamodel that
includes a synthetic typing relation. Finally, in [18], the authors assume that the only
way to do multilevel metamodelling is by using the clabject approach. Therefore, they
apply the same ideas for their implementation of multilevel modelling.

The aforementioned approaches implement their multilevel modelling solutions
by using a linguistic metamodel including the clabject element, and “flattening” the
ontological hierarchy as an instance of this linguistic metamodel. That is, the whole
ontological stack becomes an instance of the clabject-based modelling language. Besides,



they require the creation of supporting tools from scratch, such as editors, constraint
definition mechanisms and import/export capabilities to more widespread tools like EMF.
We believe that multilevel modelling can be realised in a different way that improves its
flexibility and removes the need for custom-made environments and tools. In this work,
we present a different approach that does not require the definition of a specific linguistic
metamodel nor a flattening of the ontological levels.

3 Conceptual Framework for Multilevel Modelling

In this section we explain the details of a conceptual multilevel modelling framework
that realizes the concepts of potency and linguistic extension in a different way than
the approaches listed in section 2. Then, we introduce MultEcore, a tool that enables
multilevel metamodelling directly into conventional EMF. And finally, we discuss how
this way of modelling in MultEcore can be applied into the domains of behavioural
modelling and runtime verification [15].

The design of this conceptual framework is based on an ontological hierarchy of
models with a fixed, common and generic topmost metamodel. In other words, the
ontological hierarchy does not require a linguistic metamodel in order to be consistent,
as opposed to the clabject-based proposals. The effect of this is a single, vertical hierarchy
of models with a fixed topmost metamodel. Therefore, this hierarchy is similar to MOF,
but does not restrict the number of new levels that the user can create. An overview of
the proposed conceptual framework is displayed in Fig. 1. Note that since the ontological
stack can grow downwards an arbitrary number of levels, these are indexed increasingly
from the top. That is, the upper levels (with a higher degree of abstraction) have the
lower indexes, as opposed to the standard OMG indexing.

Mn

(instance)

Mn-1

M0

(fixed)

M1

...

ontologically typed

ontologically typed

ontologically typed

ontologically typed

linguistically

typed

LE 1

LE 2

Figure 1: Overview of the multilevel
conceptual framework

In order to facilitate multilevel modelling
directly in EMF, we have extended the idea
of two-level cascading [5] (also referred to
as “promotion transformation” [13]) in order
to make it repeatable and bidirectional. Re-
peatable means that, instead of applying the
two-level cascading just once, we allow to re-
peat it every time the user requires to create a
new model as an instance of a previously ex-
isting instance, by transforming the latter into
a model that can be instantiated. In EMF, this
transformation implies generating an Ecore
metamodel from an XMI instance.

By itself, this repeatability only allows to generate new levels downwards. That
is, create new instances with a lower level of abstraction. By making this process
bidirectional, we allow to regenerate the instance version of a promoted model whenever
it is required. In other words, in our extension of the two-level cascading, the process can
be undone. This way, it is not required to store the information of the same model twice
(as an instance and as a model). As explained in section 3.1, we use a level-agnostic
representation for each level, from which both a model and an instance can be generated.



The process of applying two-level cascading in a repeatable and bidirectional way is
illustrated in Fig. 2. This figure shows the ontological stack on the left, including the
typing relation between models in two adjacent levels. Notice that the typing relation
could also be labelled instance of. Therefore, we consider every model to be an instance
of the model above, and we use the terms “model” and “instance” instead of “model”
and “metamodel” to avoid confusion. As displayed, the topmost model in the ontological
stack is Ecore.ecore, from which a user can create an Ecore model. The user can
use any EMF editor configured with this second model to create an instance out of it
(m2.m1, in XMI format). After creating the instance, EMF does not allow to create new
levels on the stack, since an Ecore model is required for that.

Our contribution to overcome this limitation is the creation of a level-agnostic,
graph-based representation of a model, independent of its level and typing relation.
This representation can be generated from both an XMI instance and an Ecore model,
and can be used to regenerate both of them. As a consequence, the user can get either
the model or instance representation of a model in any level arbitrarily. That is, she
gets a bidirectional application (upwards and downwards) of the two-level cascading
technique. From now on, and based on the recurring dashed trapezium shape displayed
on Fig. 2, we will refer to this technique as sliding window. Fig. 3 displays how our model
representation is connected to the concept of sliding window by switching among the
formats aforementioned. Moreover, the compatibility of our approach with conventional
EMF allows to insert any pre-existing Ecore model into the ontological stack by just
specifying the typing relations with the adjacent levels.

Ecore.ecore Editor

m1.ecore

configures

typed by creates

configures

typed by creates

configures

typed by creates

configures

m2.m1

m2.ecore

m3.m2

m3.ecore

Figure 2: Repeated, bidirectional
application of two-level cascading

The left hand side of Fig. 1 shows two lin-
guistic metamodels, namely LE 1 and LE 2. We
mentioned at the beginning of this section that the
ontological stack in our framework does not re-
quire the existence of a linguistic metamodel. On
the contrary, we propose using linguistic metamod-
els as a manner of adding new “views” to the
models in the ontological stack. This way, the se-
mantics of the models in the stack can be changed
without modifying the models themselves, in a
similar way as [12]. That is, any element from any
model in the ontological stack can have one addi-
tional type (called classifier in some approaches)
for each linguistic metamodel, and the number of
linguistic metamodels is not restricted. This way,
different and independent typing, all of them orthogonal to the ontological stack, can
be plugged or unplugged from the stack without affecting its primary specification. In
section 3.3 we illustrate how this usage of linguistic metamodel can be applied.

The differentiating aspects of our conceptual framework are summarised as follows:

– A multilevel modelling stack that does not require linguistic metamodels, synthetic
typing relations or “flattening” of the ontological stack.

– A realization of linguistic extension that differs from other approaches and allows
for several, independent linguistic metamodels orthogonal to the ontological stack.



– Looser linguistic typing: while every element in every model has an ontological
type, it does not require a linguistic type for each plugged linguistic metamodel.

– An extension of the two-level cascading approach that aides the implementation of
the framework as an extension of EMF which preserves full compatibility with its
model representations and tools.

According to [10], the use of a fixed topmost metamodel can pose a threat to the
flexibility of the conceptual framework. The main criticism is that such a framework
may be intrusive, since the user is forced to use the topmost metamodel. Hence, such
a framework could not be used for scenarios in which the same model can have more
than one “semantics”, which implies that any element may have more than one type
simultaneously. However, our conceptual framework can be used to overcome these
issues, since the user can add a linguistic metamodel and add new types to the elements
into the ontological stack. Furthermore, the possibility of adding new intermediate levels
in a pre-existing stack favours the flexibility of switching or reusing metamodels. As
explained before, this can be a solution for the issues presented in [12].

3.1 Tooling with MultEcore

One of the goals for the tooling aspect of our approach was keeping full compatibility
with EMF. This way, the user does not depend on a set of “closed-garden” tools where
the lack of proper documentation and maintainability is common. Moreover, the learning
curve for the standard EMF user is almost non-existent. We realized the concept of
sliding window in a small Eclipse plugin that offers users the possibility of switching
between the Ecore and XMI representation of any model, so that she can still use her
tools of choice. Fig. 2 shows how the sliding window concept applies to the EMF
framework. In order to explain it, let us examine first how a basic modelling process is
carried out in the EMF:

1. The user starts with the EMF reflexive metamodel (Ecore.ecore) at her disposal.
2. She uses an editor compatible with Ecore, which can be graphical, tree-based or

textual, to create her own models (M0.ecore in the figure). These models will be
typed by Ecore.ecore. The typing relationship means that the elements in this
model are instances of Ecore elements, such as EClass and ERelation.

3. Once the user has created a custom model, she can use it to create a second editor.
4. The user can now build instances of the custom model m1.ecore using this second

editor. The usual convention in EMF is that this instance has a file extension which
is the same as the name of its model. Hence the name m2.m1 in Fig. 2. However,
this extension has no effect on the serialization of the instance, which always uses
the XMI format.

At this point, the EMF hierarchy reaches its limit: it is not possible to repeat again
the process of creating an editor from the bottommost model (XMI instance). In other
words, it is not possible to create a new model at the level M3 typed by a model at the
level M2. However, if the instance on the level M2 could be represented as a model (in
Ecore format), the process of creating M3 could be carried out in the same way as the



mi.mi-1

mi.ecore

Editor

mi+1.mi

configures

typed by creates

mi.mef
xmi2mef
mef2xmi

mef2ecore
ecore2mef

Figure 3: Implementation of the sliding window using MEF files

two last steps of the process described above. The sliding window allows the user to do
exactly that. If the window slides down one level, the instance previously at the bottom
of the window needs to be transformed into an Ecore model. On the contrary, sliding
the window up one level requires to transform the model on top into an instance, and
generating a model from the level above. This way, the user can (1) edit the instance at a
level Mi and then slide down the window by switching to the model representation of
Mi, which allows to create or edit the level Mi+1; or (2) get the instance representation
of the current Ecore model to edit it, which implies sliding up the window.

For a model in a given level Mi, the key to be able to switch between the model
(mi.ecore) and the instance (mi.mi-1) representations is to have an intermediate,
more abstract representation that is agnostic to the particularities of model and instance
serialisations. Fig. 3 outlines how this intermediate representation is applied in the sliding
window. In this abstract representation, models are considered to be attributed-graph
based. Therefore, they only consist of elements and relations (equivalent to EClass and
EReference in EMF). In addition, we store information such as the name, type, and
potency of each element. The intermediate representation is serialised in XML format,
following a particular schema called MultEcore Format. Consequently, we identify this
files with the extension MEF.

Fig. 3 shows how MultEcore uses a MEF file (mi.mef) to enable switching between
both representations on a level Mi. We defined two translations for each representation:

– mef2xmi, to get the instance representation of a level;
– xmi2mef, to reflect the changes from the instance into the MEF file;
– mef2ecore, to generate the model representation of a level; and
– ecore2mef, to reflect the changes from the model into the MEF file.

It is worth pointing out that the execution of mef2xmi on a level Mi triggers the
execution of mef2ecore in the level Mi-1. The four translations can be executed in a user-
transparent fashion, and their execution times for the example presented in section 3.2
are negligible. Even further, the process of translating back and forth among the three
representations (Ecore, XMI and MEF) can be transparent to the user. It is trivial to hide
the process of interacting with the MEF files, and simply offer the possibility to select
one level and get the desired representation, using the mef2x transformations. This way,
the user is only aware of the existence of several levels and the possibility of getting the
model or the instance representations for each of them. Any change on the generated
models is automatically reflected in the MEF files at the time of saving.

We have created a custom editor with Eclipse Sirius [21]. This editor (also called
viewpoint in Sirius’ terminology) simplifies the visualization and highlights multilevel



Executable

EClass

Action

EClass

Connection

EClass

Parameter

EClass

InPolicy

EClass

OutPolicy

EClass

(a) Visualization of M1

Place

Action

Transition

Action

InArc

Connection

OutArc

Connection

Token

Parameter

(b) Visualization of M2

p1

Place

p2

Place

t1

Transition

in

InArc

outtok1

Token OutArc

(c) Visualization of M3

Figure 4: Models created with MultEcore

features such as the type of an element. This editor allows to create instances of any
ontological type, including Ecore types, metamodel types, and meta-metamodel types
via potency, which are discovered by transitively visiting all the available supertypes.
The visualisation of the example presented in section 3.2 was created using this editor.

Note that other multilevel-aware tools such as constraint and transformation lan-
guages would require to either flatten the whole ontological and linguistic hierarchies or
reimplement them with multilevel capabilities. Nevertheless, existing ones such as ATL
and OCL can be used seamlessly on the Ecore and XMI representations.

3.2 Application of Multilevel Modelling for Behavioural Modelling

Fig. 4 shows three levels of an example multilevel stack created with MultEcore. M1
defines the generic elements that appear in behavioural modelling languages such as
activity diagrams, Petri nets and state machines. In the level M2 the language develop-
ment takes place, and the metamodel of these languages must comply with the metamodel
at M1. And in M3, a particular instance of the language specified in M2 is created. The
topmost level M0 consists of the Ecore reflective metamodel, which is not displayed.
The bottommost level M4 represents, in this example, the state of the system at a par-
ticular point during runtime, if the stack is used for executable modelling with model
transformations as execution semantics. Such capabilities are still a work in progress, so
M4 is also excluded from Fig. 4. Hence, only the levels M1 to M3 are displayed.

All the concepts in M1 are instances of EClass and EReference. This model
consists of two main concepts Action and Connection. Both of them inherit from
the abstract concept Executable, whose semantics is something that runs. Action
represents the abstraction of a node, state or place. That is, the current task or state that the
system is concerned about in a particular moment in time. The concept Connection



abstracts the idea of a transition from one Action to another. We consider that giving
this transition the semantics of something that runs is required to allow the representation
of some behavioural DSMLs such as UML sequence diagrams, in which the passing of
a message might require the execution of operations and assignments. In these cases,
a connection contains some executable semantics, rather than acting as a mere jump
from one Action to another. Both Action and Connection inherit a relation with
Parameter. This concept is used to represent passing of information at runtime. Notice
that there are some implicit semantics in the way this class is related to Executable.
By default, all parameters are of the input-output type, and can be connected to more than
one element to indicate parameter passing or global variables. The attributes InPolicy
and OutPolicy are used to enrich the behaviour of a given Connection. These are
not relevant for this example and are omitted here.

M2 defines a classic Petri Net model, with Place and Transition as instances
of Action, Tokens as parameters that can be passed between places, and arcs that
connect places and transitions. M3 represents a simple Petri Net with two places p1
and p2, an intermediate transition t1, the corresponding arcs, and a token tok1 in p1.
Note that this representations uses the abstract syntax from our tool. If required, the
modelling engineer can define a new editor (e.g. in Sirius) with a more specific syntax.

3.3 Application of Linguistic Metamodel for Runtime Verification

The literature shows many examples of behavioural DSMLs created with multilevel
modelling. Motivated by those examples, we used our conceptual framework to create
a linguistic metamodel that enables runtime verification in any behavioural DSML
specified in the ontological stack. This idea was originally presented in [16]. This
linguistic metamodel enables the creation of temporal properties in any propositional
logic. We have chosen the syntax and semantics of LTL for this illustrative example due
to its simplicity and popularity, but it can be substituted by other suitable logics such as
CTL [8] or languages like SALT [6].

Binary

1

2

F

G

AND

->

OR

1..n

Unary

Formula

Atomic prop.

Element

X

U

R

NOT

FALSE

TRUE

Figure 5: LTL
metamodel

Independently of the chosen language, there are two key
aspects in the way we link, via linguistic metamodel, the
formulae for temporal properties with the models in the on-
tological stack. The first aspect is considering atomic pro-
positions as collections of elements of any given level in the
ontological stack. The evaluation of an atomic proposition
should yield TRUE or FALSE. This result is evaluated by
matching the elements in the atomic proposition with those
in the corresponding level of the ontological stack. The most
common scenario is looking for a match of a particular set
of element instances in the bottommost level, which repres-
ents the state of the modelled system at runtime, as hinted in
section 3.2. This process is explained in more detail in [17].
The second key aspect is the translation of the grammar of
the chosen language into a model with equivalent syntax and
semantics. Fig. 5 shows this model for our LTL example.



This linguistic metamodel consists of Formulae which are applied to Models,
which contain a collection of model Elements. Element is the linguistic type that
can be added to all elements, at any level, on the ontological stack. Besides the model
contains the Unary operators G, F and X and the Binary operators U and R. The unary
operators mean, respectively, the formula must hold now and in the future, the formula
must hold eventually and the formula must hold in the next point in time. As for the
binary ones, U is interpreted as one formula must hold as long as the other one does
not hold, and R is interpreted as one formula has to hold at least until the first time
that the other one holds. The logical operators AND, OR and NOT and the unidirectional
implication arrow → complete the syntax.

:G :F:->

:Model

x::Place

(:Element)

in in

out

out

:Model

t::Trans.

(:Element)

y::Place

(:Element)

k::Token

(:Element)

x::Place

(:Element)

t::Trans.

(:Element)

y::Place

(:Element)

k::Token

(:Element)

Figure 6: Example of the
liveness temporal property

As an example of a property modelled with this tech-
nique, Fig. 6 displays a simplified version of the liveness
property for Petri Nets (see section 3.2) with just one
Transition t between two Places x and y. No-
tice that the Elements from the ontological hierarchy
and their relations are depicted with a dotted border, and
that they act as variables. This means that their names are
used to identify the same element in two different points
in time. For example, x represents the same instance of a
particular place in two different states of the system, one
before passing the token and one after. Additionally, the
variable name can be omitted if it is not necessary.

The liveness property holds if every time that the input place (x) of a transition (t)
has a token (k), the transition is fired, passing the token to the output place (y) of that
transition. Other safety and co-safety properties can be modelled in a similar fashion.

4 Conclusions and Future Work

We have presented a conceptual framework that enables multilevel modelling in an
alternative way, compared to the state of the art. This paper shows how the approach can
be applied into commonly researched scenarios, such as behavioural modelling, as well
as less common ones like runtime verification. We have presented the tool MultEcore that
implements this conceptual framework directly in EMF. This implementation reduces
the learning curve, eliminates technology lock-in and provides full compatibility with
EMF’s set of tools and techniques. Our prototype Eclipse-based implementation with
the example on behaviour modelling through Petri Nets is available from http://
prosjekt.hib.no/ict/multecore/.

The next steps of this work are the extension of the tool functionalities, such as
querying and navigation of subtypes and supertypes. We also intend to use MultEcore
to create a hierarchy of behavioural models. Afterwards, we plan to define semantics
for that hierarchy of languages using coupled model transformations [20] exploiting
the existence of several levels of abstraction. These transformations will configure an
execution engine for the behavioural models in the ontological stack. Finally, we will
formalize the MEF representation and the related transformations as a model and model
transformations, respectively.

http://prosjekt.hib.no/ict/multecore/
http://prosjekt.hib.no/ict/multecore/


References
1. C. Atkinson. Meta-modelling for distributed object environments. In Enterprise Distributed

Object Computing Workshop (EDOC’97), pages 90–101. IEEE, 1997.
2. C. Atkinson and R. Gerbig. Flexible deep modeling with Melanee. In Modellierung (Work-

shops), volume 255 of LNI, pages 117–122. GI, 2016.
3. C. Atkinson, R. Gerbig, and N. Metzger. On the execution of deep models. In 1st Intl.

Workshop on Executable Modeling, volume 1560 of CEUR Workshop Proceedings, 2015.
4. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models. Software &

Systems Modeling, 7(3):345–359, 2008.
5. C. Atkinson and T. Kühne. Concepts for comparing modeling tool architectures. In MoDELS,

volume 3713 of LNCS, pages 398–413. Springer, 2005.
6. A. Bauer, M. Leucker, and J. Streit. SALT—structured assertion language for temporal logic.

In Z. Liu and J. He, editors, ICFEM, volume 4260 of LNCS, pages 757–775. Springer, 2006.
7. M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice.

Morgan & Claypool Publishers, 2012.
8. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
9. J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In Objects, Models,

Components, Patterns, volume 6141 of LNCS. Springer, 2010.
10. J. de Lara and E. Guerra. Generic meta-modelling with concepts, templates and mixin layers.

In MoDELS, volume 6394 of LNCS. Springer, 2010.
11. J. de Lara, E. Guerra, and J. S. Cuadrado. When and how to use multilevel modelling. ACM

Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, Dec. 2014.
12. J. de Lara, E. Guerra, and J. S. Cuadrado. A-posteriori typing for model-driven engineering.

In MoDELS, pages 156–165. IEEE, 2015.
13. J. de Lara, E. Guerra, and J. S. Cuadrado. Model-driven engineering with domain-specific

meta-modelling languages. Software & Systems Modeling, 14(1):429–459, 2015.
14. T. Kühne and D. Schreiber. Can programming be liberated from the two-level style: multi-level

programming with DeepJava. ACM SIGPLAN Notices, 42(10):229–244, 2007.
15. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and

Algebraic Programming, 78(5):293–303, 2009.
16. F. Macias, A. Rutle, and V. Stolz. A Property Specification Language for Runtime Verification

of Executable Models. In NWPT, pages 97–99, 2015. Technical report RUTR-SCS16001,
School of Computer Science, Reykjavik University.

17. F. Macias, T. Scheffel, M. Schmitz, and R. Wang. Integration of runtime verification into
meta-modeling for simulation and code generation. In Intl. Conf. on Runtime Verification
(RV’16), volume 10012 of LNCS. Springer, 2016.

18. F. Mallet, F. Lagarde, C. André, S. Gérard, and F. Terrier. An automated process for imple-
menting multilevel domain models. In M. van den Brand, D. Gašević, and J. Gray, editors,
Software Language Engineering, volume 5969 of LNCS, pages 314–333. Springer, 2010.

19. A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation of deep metamod-
elling. Formal Aspects of Computing, 26(6):1115–1152, 2014.

20. A. Rutle, W. MacCaull, H. Wang, and Y. Lamo. A metamodelling approach to behavioural
modelling. In Behaviour Modelling — Foundations and Applications. ACM, 2012.

21. Sirius. Project Web Site. https://eclipse.org/sirius/ Accessed 21 of July 2016.
22. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework.

Addison-Wesley Professional, 2nd edition, 2008.
23. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. AToMPM:

A web-based modeling environment. In Demos/Posters/StudentResearch@ MoDELS, 2013.
24. S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne. Multi-level modelling

in the Modelverse. In MULTI@ MoDELS, volume 1286 of CEUR Workshop Proceedings,
2014.

https://eclipse.org/sirius/

	MultEcore: Combining The Best of Fixed-Level and Multilevel Metamodelling

