
1

Software Engineering Group 1

Overview

1. Find out why software engineering is important

■ see some software engineering failures

2. Get acquainted with –

■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

A Feature-based Comparison
of Melanee and MetaDepth
Ralph Gerbig1, Colin Atkinson1, Juan de Lara2, Esther Guerra2

1University of Mannheim
2Universidad Autónoma de Madrid

2

Software Engineering Group 2

Obvious difference?

■ Text based (HUTN-dialect) vs. diagrammatic (UML/ER dialect)

■ Programming vs. language engineering

■ Standalone console application vs. Eclipse distribution

■ Not EMF-based vs EMF-based

MelaneeMetaDepth

3

Software Engineering Group 3

Terminology

■ Equal terminology is highlighted

■ Only the term potency and clabject are equally used

■ Deep Model and Mutability are not available in MetaDepth

MetaDepth Melanee

- Deep Model

Model Level

Clabject Clabject

Node Entity

Edge Connection

Reference -

Field Attribute

Potency Potency

Field Potency Durability

- Mutability

4

Software Engineering Group 4

Terminology

■ Notational difference between @-notation and superscript notation for expressing potency

Melanee

MetaDepth

Model Level

5

Software Engineering Group 5

Terminology

■ Notational difference between @-notation and superscript notation for expressing potency

Melanee

MetaDepth

Node/Clabject Entity/Clabject

6

Software Engineering Group 6

Terminology

■ Notational difference between @-notation and superscript notation for expressing potency

MelaneeMetaDepth

Edge/Reference/Clabject Connection/Clabject

7

Software Engineering Group 7

Terminology

■ Notational difference between @-notation and superscript notation for expressing potency

Melanee

MetaDepth

Field Attribute

8

Software Engineering Group 8

Terminology

■ Notational difference between @-notation and superscript notation for expressing potency

Melanee

MetaDepth

Potency

9

Software Engineering Group 9

Terminology

■ Notational difference between @-notation and superscript notation for expressing field potency /

durability

Melanee

MetaDepth

Field Potency Durability

10

Software Engineering Group 10

Architecture

■ Orthogonal Classification Architecture

■ Linguistic and Ontological Classification

■ Potency for Levels (MetaDepth only), Clabjects and Atttributes

■ Potency is reduced at instances by one

■ Support of *-potency

■ Potency 0 clabjects cannot have instances

■ No mutability in MetaDepth

MelaneeMetaDepth

11

Software Engineering Group 11

Deep References

■ Supported in MetaDepth only

■ Of advantage in model import scenarios

■ Page and Component are defined in different models

■ Clabjects of different potency can be connected with each other

■ Page has potency of 1 and Component of 2

■ It can be specified that Page references indirect instances of Component with potency 0

■ @0 annotation at connection

12

Software Engineering Group 12

Leap Potency

■ Supported in MetaDepth only

■ Defines at which classification level an instance of a clabject has to exist

■ Prevents identity instantiation

■ Instantiation just for the reason of being able to create instances on

classification level further down

■ Connector is from @2-level is used at @0-level without instantiation on @1-level

■ Leap potency of 2 in combination of deep references to parameters

13

Software Engineering Group 13

Classification & Inheritance

■ Example does not work in MetaDepth but in Melanee

■ In MetaDepth subtype and supertypes need to have “compatible” types

■ CivilServant has to have EmployeeType as type

■ In MetaDepth potency of all clabjects must be one lower than type

■ CivilServant must have potency 1 and be defined as abstract

■ Abstract vs. Potency 0 in MetaDepth

■ Potency 0 a clabject is an instance only and can thus not be instantiated. It cannot have

subclasses

■ Abstract a clabject with potency higher one that cannot have direct instances. Only

concrete subclasses are instantiable

14

Software Engineering Group 14

Classification & Inheritance

■ Example does not work in MetaDepth but in Melanee

■ A1 and B1 do have disjoint ontological types

■ Problem: A.allInstances() evaluated at level 0 would return b (an “indirect”

instance of B), which would be unexpected

■ In MetaDepth subtype and supertypes need to have “compatible” types

■ A and B need to inherit from each other

15

Software Engineering Group 15

Summary

■ Highlighted rows are equal in Melanee and MetaDepth

16

Software Engineering Group 16

Summary

17

Software Engineering Group 17

Summary

■ Most significant differences are related to

■ Model vs Level

■ Distributed Modelling

■ Classification

■ Leap Potency

■ Inheritance

■ Abstract Clabjects

■ Connections

■ Deep References

■ Connections and References

■ Inheritance

■ Generalization Sets

18

Software Engineering Group 18

Conclusion

■ At first glance Melanee and MetaDepth seem to be quite similar

■ The tools however, have significant differences

■ We embedded MetaDepth like syntax into the Melanee Tooling

■ This is, however, not 100% compatible to MetaDepth caused by

the differences

■ Working on a Melanee to MetaDepth compatibility mode

■ Try out the tools

■ MetaDepth --- http://www.metadepth.org

■ Melanee --- http://www.melanee.org

http://www.metadepth.org/
http://www.melanee.org/

19

Software Engineering Group 19

Thank You!

