A Feature-based Categorization of Multi-Level Modeling Approaches and Tools

Muzaffar Igamberdiev, Georg Grossmann, Markus Stumptner

MULTI Workshop 2016

University of South Australia

Multi-level modelling

• Different approaches and formalism:

Orthogonal Classification Architecture (OCA), Deep meta-modeling, Dual Deep Instantiation/modeling, Multi-level Theory (MLT), Diagram Predicate Framework (DPF), M-objects and M-relationships, Powertype, Materialization

Different tools:

Melanee, MetaDepth, DPF, DDM, OMLM/MULLER, VIATRA, VMTS, Nivel, OMME, XLM

Different languages:

LML, MetaDepth, ConceptBase, OMLM & DDM (Flora-2), M-SQL, DeepJava, FOML

Multi-Level Modelling feature model

- Linguistic engineering
- Domain modelling

Domain modeling perspective

- Modeling patterns
- Meta-model strictness
- Implementation @ meta-model
- Deep characterization

4

Tool support perspective

- Transformations, Import/Export
- Notation
- Development environment
- Verification & reasoning

Comparison of approaches and tools

Approach	Tools	2	2. Lang. eng. 3 4 Domain modeling													5 Tool support 6												
npproach	10015	2.	2122 22 24				<u> </u>	4 1 Mod pottorns 4 2 4 2 4 4 Add m 4 5 4 6 Doop 5 1 5 2 5 2								oor support	5 4	5	5 Vot	rif								
		2.1	2.2	2.0 0.9.1	2.4		4	1.1 P	4 1 9	1 1 1		4.2	4.5	4.4	Add.	ш. 11.1.9	4.0	4.0	Leep	0.1	0.2	0.0 E 9.1	F 2 0	0.4	0. F F 1	5 ver	н Е Е Э	_
				2.3.1		11	4.	1.Z 4	4.1.3	4.1.4	4.1.0			4.4.1	4.4.2	4.4.3		4.0.1	4.0.2			5.3.1	5.3.Z		5.5.1	ə.ə.2	5.5.3	
Telos [27]	Telos		D	MA	\bullet							L									Т	Conceptbase	JRE	\bullet	Ν	S	F	
VODAK 20	VODAK		D	•	~							L							•		Т	VODAK	~		Ν	Α	F	
OCA [7]	Melanee		D	MA	•					۲	•	S			\odot		۲	Μ	•	M2	VT	EMF	JRE	۲	0	S	F	
SKIF [18]	SKIF		Α	MA	•							S					N/A				Т	SKIF	First-order		Ν	S	F	
Materialization 12	Metaclass		2	MA		Π				•		S					N/A				Т	~	~				F	
	impl																											
VPM [36]	VIATRA		D	MA	•							L							•	2M	V	UML	Prolog,XSB	•	Ν	S	F	
VMTS 26	VMTS		Α	MA								S					N/A				Т	C#	.NET	•	0	S	F	
Powertype [17]				MA		Π						L																
DeepJava [22]	DeepJava		Α	MA	•	Π						S					•	Μ	•		Т	Polyglot, javac	JRE	•			F	
Nivel 2	Nivel		Α	Α	•					•		S						Μ	•	M2	Т	Nivel	WCRL	•	Ν	Μ	F	
Aschauer et al. [1]	Traversal al-		D	Α		Π						L					N/A	Μ			Т	Algorithm						
	gorithm																										1	
M-Objects 28	M-SQL		Α	MA	•							S					•	Μ			Т	M-SQL	SQL		0	S	F	
Deep meta-modeling 34	MetaDepth		D	MA	•					•	•	S			•			SM	•	2M	Т	MetaDepth	JRE		0	S	FQ	
OMME 37	OMME		Α	MA								S					N/A				V	EMF/Ecore	JRE					
XLM [13]	XLM		Α	MA		Π						S					N/A				VT	EMF	JRE	•	0	S	F	
DPF 23	DPF work-		Α	MA								S						Μ	•		V	EMF	JRE	•	0	S	F	
	bench																											
DDI [29]	Conceptbase		Α	MA						•		L			•			Μ	•		Т	ConceptBase	JRE	•	Ν	S	FQ	
DesignSpace 14	Model Ana-		Α	MA					•			S					•	Μ	•		VT	RSM,EMF	JRE	•	Ο	S	F	
	lyzer																											
MLT [10]			D	MA								L					N/A											
OMLM 19	OMLM,	•	Α	Α	•						•	S	•		\bullet			SM	•	2M	Т	Flora-2	XSB		Ν	Α	FQ	•
	MULLER																										1	
DDM <u>32</u>	DDM		Α	Α	\bullet					•	•	L			\bullet			SM	•		Т	Flora-2	XSB		Ν	Α	F	

Features: lacksquare - supported, lacksquare - semi-supported, empty - not supported. \sim - unknown. N/A - not applicable.

Language engineering: 2.2 (D)efined, (A)dapted. 2.3 (M)ethod, (A)ttribute.

Domain modeling: 4.2 (S)trict, (L)oose. 4.6.1 (S)ingle, (M)ulti-potency.

Tool Support: 5.1 2M - two-level to multi-level, M2 - the opposite. 5.2 (T)extual, (V)isual. 5.5.1 (O)CL, (N)on-OCL. 5.5.2 Single & All levels. 5.5.3 (F)unctional & (Q)uality properties.

Comparison results

Design choices:

- Modeling based on existing vs a new language
- Strict vs loose meta-modeling
- Single vs multi-potency
- Textual vs visual (GUI) notation
- OCL vs non-OCL verification
- Single vs all ontological scope
- Functional vs quality properties

Challenges & trends:

- Linguistic meta-model extension
- Real-life industry models, applications
- Element classification pattern
- Addressing implementation at meta-model level
- Additional modeling features
- Multi-level constraints

Comparison results (cont.)

User guidance & support:

- Import and export features
- Visual too notation (GUI)
- OCL and non-OCL for model verification

Application area of the categorization.

- Discover and exchange features between approaches and tools
- Guidance for new users
- A starting point for the evaluation criteria for a multi-level modeling tool contest

Conclusion & Future work

Conclusion

- a categorization for multi-level modeling based on the standard featurediagram notation
- compared MLM approaches and tools to map/visualize research challenges and trends
- > support users in their decisions

• Future work

- comparison criteria are regarded as a course-grained representation of the domain, the fine-grained version can be elaborated by zooming in the specific criterion
- feature model limits the range of comparison results into the `supported', `semi-supported' and `not supported' options only.
- a multi-level modeling tool contest in the context of the MULTI workshop