MultEcore

Combining The Best of Fixed-Level and Multilevel Metamodelling

Fernando Macías Adrian Rutle Volker Stolz

October 4, 2016

Fernando Macías, Adrian Rutle, Volker Stolz MultEcore

- \checkmark High reliability
- ✓ Mature (meta)modelling ecosystems
- $\checkmark\,$ Good tool coverage

- ✓ High reliability
- ✓ Mature (meta)modelling ecosystems
- $\checkmark\,$ Good tool coverage

Cons

- $\times~$ Mixed abstraction levels
- $\times~$ Synthetic typing relation
- \times Convoluted

Pros

- $\checkmark~$ Unbounded number of levels
- ✓ Deep hierarchies (potency)
- ✓ Linguistic extensions

- $\checkmark~$ Unbounded number of levels
- ✓ Deep hierarchies (potency)
- \checkmark Linguistic extensions

Cons

- $\times\,$ Lack of clear consensus on the foundations
- $\times\,$ No common focus in current multilevel tools
- \times Technology lock-in

- $\checkmark~$ Unbounded number of levels
- ✓ Deep hierarchies (potency)
- ✓ Linguistic extensions

Cons

- $\times\,$ Lack of clear consensus on the foundations
- \times No common focus in current multilevel tools
- \times Technology lock-in

"There is still no clear consensus on what the paradigm actually entails and how it should be applied"

- $\checkmark~$ Unbounded number of levels
- ✓ Deep hierarchies (potency)
- ✓ Linguistic extensions


Cons

- $\times\,$ Lack of clear consensus on the foundations
- $\times\,$ No common focus in current multilevel tools
- \times Technology lock-in

"There is still no clear consensus on what the paradigm actually entails and how it should be applied"


MULTI 2016 CfP

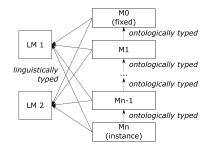
Common solution: Clabject

Adapted from: Melanee Project - https://melanee2.informatik.uni-mannheim.de/confluence/

Common solution: Clabject

Adapted from: Melanee Project - https://melanee2.informatik.uni-mannheim.de/confluence/

Issues × Requires a linguistic metamodel

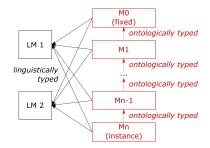

- \times Every element needs a linguistic type
- $\times\,$ Synthetic typing and flattening of the ontological stack
- \times Custom tools and representations

Ontological stack Does not require linguistic metamodels, synthetic typing relations or flattening

Linguistic metamodels Multiple and independent metamodels orthogonal to the ontological stack

Linguistic typing Less strict. An element may have none, one or several linguistic types

Linguistic extension Still allowed, but models with linguistic extension become dependent on the linguistic metamodel

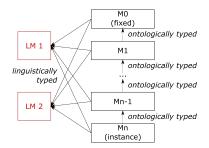


Ontological stack Does not require linguistic metamodels, synthetic typing relations or flattening

Linguistic metamodels Multiple and independent metamodels orthogonal to the ontological stack

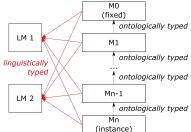
Linguistic typing Less strict. An element may have none, one or several linguistic types

Linguistic extension Still allowed, but models with linguistic extension become dependent on the linguistic metamodel



Ontological stack Does not require linguistic metamodels, synthetic typing relations or flattening

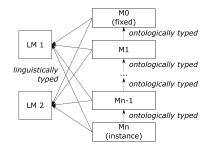
Linguistic metamodels Multiple and independent metamodels orthogonal to the ontological stack

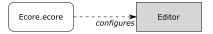

Linguistic typing Less strict. An element may have none, one or several linguistic types

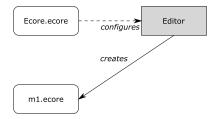
Linguistic extension Still allowed, but models with linguistic extension become dependent on the linguistic metamodel

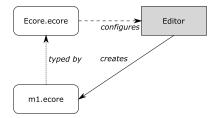
Ontological stack Does not require linguistic metamodels, synthetic typing relations or flattening Linguistic metamodels Multiple and independent metamodels orthogonal to the ontological stack Linguistic typing Less strict. An element may have none, one or several linguistic types Linguistic extension Still allowed, but

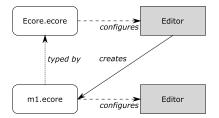
models with linguistic extension become dependent on the linguistic metamodel

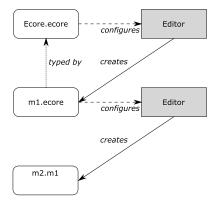


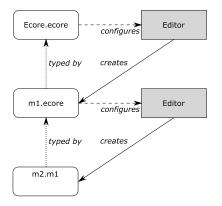

Ontological stack Does not require linguistic metamodels, synthetic typing relations or flattening

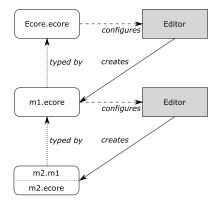

Linguistic metamodels Multiple and independent metamodels orthogonal to the ontological stack

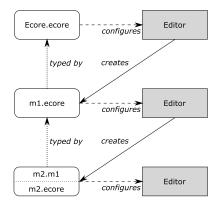

Linguistic typing Less strict. An element may have none, one or several linguistic types

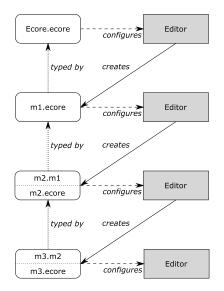

Linguistic extension Still allowed, but models with linguistic extension become dependent on the linguistic metamodel

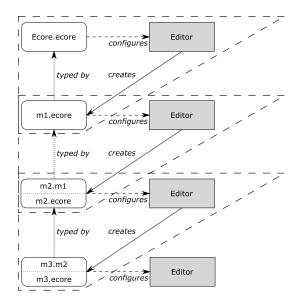


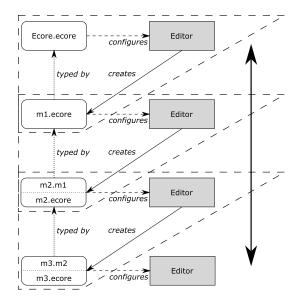


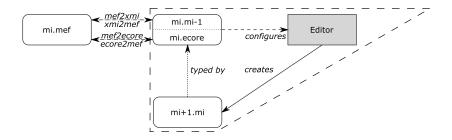


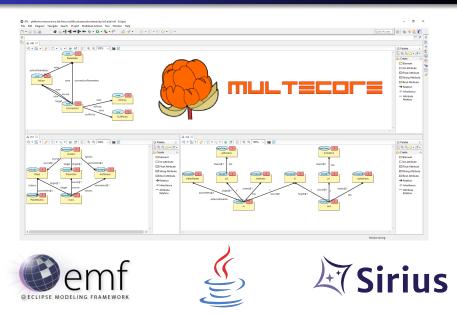


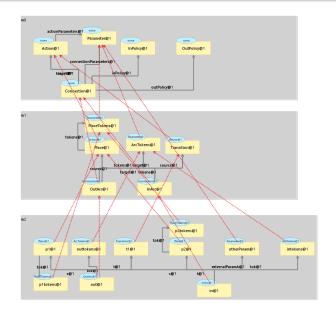




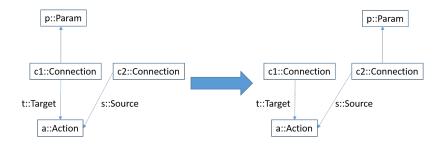




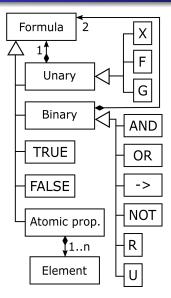



Realization on EMF – MEF representation

MultEcore tool

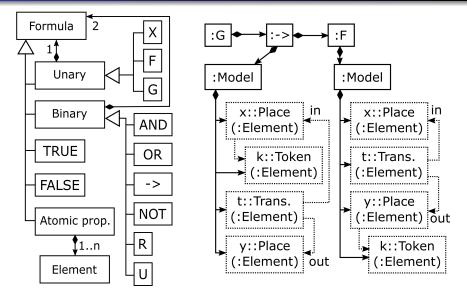


Applications – Behavioural metamodelling



Fernando Macías, Adrian Rutle, Volker Stolz MultEcore

Multilevel Coupled Model Transformations



Applications – Runtime Verification

Macias et al. Integration of Runtime Verification into Metamodeling for Simulation and Code Generation. RV 2016

Applications – Runtime Verification

Macias et al. Integration of Runtime Verification into Metamodeling for Simulation and Code Generation. RV 2016

Conclusions

- MultEcore, an alternative framework for multilevel modelling
- Applied to behavioural metamodelling and RV
- Tool as an Eclipse plugin, bypassing EMF's two-level limitation
 - Small learning curve
 - Mature ecosystem and toolset

Future Work

- New multilevel functionalities: navigation of typing relations
- Creation of a hierarchy of behavioural models
- Implementation of Multilevel Coupled Model Transformations
- MEF formalization: metamodel and model transformations

http://prosjekt.hib.no/ict/multecore/